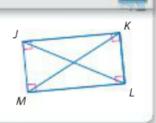

- **Properties of Rectangles** A rectangle is a parallelogram with four right angles. By definition, a rectangle has the following properties.
- · All four angles are right angles.
- Opposite sides are parallel and congruent.
- · Opposite angles are congruent.
- Consecutive angles are supplementary.
- Diagonals bisect each other.

In addition, the diagonals of a rectangle are congruent.

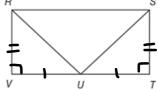

Rectangle ABCD

If a parallelogram is a rectangle, then its diagonals are congruent.

Abbreviation If a \square is a rectangle, diag. are \cong .

Example If $\square JKLM$ is a rectangle, then $\overline{JL} \cong \overline{MK}$.

Rectangle has ALL the properties of a parallelogram (7) Plus 4 right angles and \cong diagonals (2). \rightarrow 9 total.

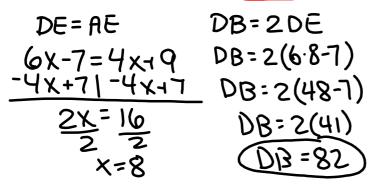

All rectangles are parallelograms, but not all parallelograms are rectangles. **Prove that Parallelograms are Rectangles** The converse of Theorem 6.13 is also true.

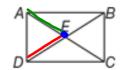
Converse: Switches order of hypothesis/conclusion. Theorem 6.14 Diagonals of a Rectangle Test for Rectangle. If the diagonals of a parallelogram are congruent, then the parallelogram is W a rectangle. **Abbreviation** If diag. of a \square are \cong , then \square is a rectangle. If $\overline{\mathit{WY}} \cong \overline{\mathit{XZ}}$ in $\square \mathit{WXYZ}$, then $\square \mathit{WXYZ}$ is a rectangle. Example Ζ

Example 1: Write a two-column proof.

PROOF: Write a two-column proof.

Given: RSTV is a rectangle and U is the midpoint of \overline{VT} . **Prove:** $\triangle RUV \cong \triangle SUT$


STATEMENTS	REASONS
1. RSTV is a rectangle	1. Given
and U is the midpl. of VT.	
2. UV≅UT	2. Def. of midpoint.
3. RV≅ST	3.0pp.sides of ∠are ≈.
4. LV and LTare Right 4	
5. ∠V≃LT	s 4. Rectangle has 4 right Ls. 5. All right Ls are 🛎 .
6. DRUVEDSUT	6. SAS.



diagonals of rectangle are $\stackrel{\sim}{=}$ · D 2. If AC = 2x + 13 and DB = 4x - 1, find DB.

AC=DB
$$2x+13=4x-1$$
 $-2x+1/-2x+1$
 $14=2x$
 $2x = 2$
 $3x = 2$

3. If DE = 6x - 7 and AE = 4x + 9, find DB.

① Diagonals of rectangles are ≅ ② Diagonals bisect each other E=midpoint

X=17

4. If $m \ge DAC = 2x + 4$ and $m \ge BAC = 3x + 4$, find $m \ge BAC$. $m \le DAC + m \le BAC = 90$ 2x + 4 + 3x + 1 = 90 5x + 5 = 90 4 - 5 = 55x = 85 Rect. has 4 right angles

5. If $m \angle ABD = 7x - 31$ and $m \angle CDB = 4x + 5$, find $m \angle ABD$.

 $m \angle ABD = m \angle CDB$ 7x-31 = 4x+5 -4x+31 = 7x+31 3x = 36 3x = 36 3x = 36

alternate interior angles are =